如图,在平面直角坐标系中,,,.(1)求的面积;(2)若函数的图象经过、、三点,且、为的图象与轴相邻的两个交点,求的解析式.
(本小题满分13分)设三次函数,在处取得极值,其图像在处的切线的斜率为。(1)求证:;(2)若函数在区间上单调递增,求的取值范围。
本小题满分13分)已知函数(1)为定义域上的单调函数,求实数的取值范围(2)当时,求函数的最大值(3)当时,且,证明:
(本小题满分14分,第Ⅰ小题5分,第Ⅱ小题4分,第Ⅲ小题5分). 数列的各项均为正数,为其前项和,对于任意,总有成等差数列. (Ⅰ)求数列的通项公式; (Ⅱ)设数列的前项和为 ,且,求证:对任意实数(是常数,=2.71828)和任意正整数,总有 2; (Ⅲ) 正数数列中,.求数列中的最大项.
(本小题满分14分)已知数列,,(Ⅰ)求数列的通项公式(Ⅱ)当时,求证:(Ⅲ)若函数满足:求证:
(本小题满分14分)设,函数,,.⑴当时,求的值域;⑵试讨论函数的单调性.