今年“双节”期间,高速公路车辆较多,某调查公司在一服务区从七座以下小型汽车中按进服务区的先后每间隔50辆就抽取一辆的抽样方法抽取40名驾驶员进行询问调查,将他们在某段高速公路的车速分成六段:后得到如图的频率分布直方图.(1)求这40辆小型车辆车速的众数和中位数的估计值;(2)若从车速在的车辆中任抽取2辆,求车速在的车辆恰有一辆的概率.
如图,菱形的边长为4,,.将菱形沿对角线折起,得到三棱锥,点是棱的中点,. (1)求证:平面; (2)求证:平面平面; (3)求二面角的余弦值.
某超市为了解顾客的购物量及结算时间等信息,安排一名员工随机收集了在该超市购物的50位顾客的相关数据,如下表所示:
已知这50位顾客中一次购物量少于10件的顾客占80%. (1)确定与的值; (2)若将频率视为概率,求顾客一次购物的结算时间的分布列与数学期望; (3)在(2)的条件下,若某顾客到达收银台时前面恰有2位顾客需结算,且各顾客的结算相互独立,求该顾客结算前的等候时间不超过2分钟的概率.
已知函数,的最大值是1,最小正周期是,其图像经过点. (1)求的解析式; (2)设、、为△ABC的三个内角,且,,求的值.
已知数列是各项均不为0的等差数列,公差为,为其前n项和,且满足,.数列满足,, 为数列的前项和. (1)求数列的通项公式; (2)若对任意的,不等式恒成立,求实数的取值范围; (3)是否存在正整数,使得成等比数列?若存在,求出所有 的值;若不存在,请说明理由.
已知函数(,,且)的图象在处的切线与轴平行. (1)确定实数、的正、负号; (2)若函数在区间上有最大值为,求的值.