选修4—5:不等式选讲 已知关于的不等式,其解集为. (Ⅰ)求的值; (Ⅱ)若,均为正实数,且满足,求的最小值.
(本小题满分12分)已知函数(Ⅰ)求的极值;(Ⅱ)若函数的图象与函数=1的图象在区间上有公共点,求实数a的取值范围.
(本题满分13分)如图,棱柱ABCD—A1B1C1D1的所有棱长都等于2,∠ABC=60°,平面AA1C1C⊥平面ABCD,∠A1AC=60°. (Ⅰ)证明:BD⊥AA1; (Ⅱ)求二面角D—A1A—C的平面角的余弦值; (Ⅲ)在直线CC1上是否存在点P,使BP//平面DA1C1?若存在,求出点P的位置;若不存在,说明理由.
(本题满分13分)在一个盒子中,放有标号分别为,,的三张卡片,现从这个盒子中,有放回地先后抽得两张卡片的标号分别为、,记.(1)求随机变量的最大值,并求事件“取得最大值”的概率;(2)求随机变量的分布列和数学期望.
已知数列满足,.(1)试判断数列是否为等比数列,并说明理由;(2)设,求数列的前项和;(3)设,数列的前项和为.求证:对任意的,.
为振兴旅游业,四川省2009年面向国内发行总量为2000万张的熊猫优惠卡,向省外人士发行的是熊猫金卡(简称金卡),向省内人士发行的是熊猫银卡(简称银卡)。某旅游公司组织了一个有36名游客的旅游团到四川名胜旅游,其中是省外游客,其余是省内游客。在省外游客中有持金卡,在省内游客中有持银卡。 (Ⅰ)在该团中随机采访2名游客,求恰有1人持银卡的概率; (Ⅱ)在该团中随机采访2名游客,求其中持金卡与持银卡人数相等的概率。