选修4—4:坐标系与参数方程已知曲线的极坐标方程式,以极点为平面直角坐标系的原点,极轴为轴的正半轴,建立平面直角坐标系,直线的参数方程是,(为参数).(1)求曲线的直角坐标方程和直线的普通方程;(2)设点,若直线与曲线交于两点,且,求实数的值.
(本题12分) 已知直线,.求和轴所围成的三角形面积.
已知函数,为的导数. (1)当时,求的单调区间和极值; (2)设,是否存在实数,对于任意的,存在,使得成立?若存在,求出的取值范围;若不存在,说明理由.
在中,两个定点,的垂心H(三角形三条高线的交点)是AB边上高线CD的中点。 (1)求动点C的轨迹方程; (2)斜率为2的直线交动点C的轨迹于P、Q两点,求面积的最大值(O是坐标原点)。
已知数列前项和满足,等差数列满足 (1)求数列的通项公式 (2)设,数列的前项和为,问的最小正整数n是多少?
已知函数(). (1)若的定义域和值域均是,求实数的值; (2)若对任意的,,总有,求实数的取值范围.