计算: (1); (2).
某工厂为贯彻落实“绿水青山就是金山银山“的发展理念,投资组建了日废水处理量为 m 吨的废水处理车间,对该厂工业废水进行无害化处理.但随着工厂生产规模的扩大,该车间经常无法完成当天工业废水的处理任务,需要将超出日废水处理量的废水交给第三方企业处理.已知该车间处理废水,每天需固定成本30元,并且每处理一吨废水还需其他费用8元;将废水交给第三方企业处理,每吨需支付12元.根据记录,5月21日,该厂产生工业废水35吨,共花费废水处理费370元.
(1)求该车间的日废水处理量 m ;
(2)为实现可持续发展,走绿色发展之路,工厂合理控制了生产规模,使得每天废水处理的平均费用不超过10元 / 吨,试计算该厂一天产生的工业废水量的范围.
先化简,再求值: ( x - 1 ) ÷ ( x - 2 x - 1 x ) ,其中 x = 2 + 1 .
解方程组 x - y = 5 2 x + y = 4 .
已知抛物线 y = a x 2 + bx + c 过点 A ( 0 , 2 ) ,且抛物线上任意不同两点 M ( x 1 , y 1 ) , N ( x 2 , y 2 ) 都满足:当 x 1 < x 2 < 0 时, ( x 1 - x 2 ) ( y 1 - y 2 ) > 0 ;当 0 < x 1 < x 2 时, ( x 1 - x 2 ) ( y 1 - y 2 ) < 0 .以原点 O 为圆心, OA 为半径的圆与抛物线的另两个交点为 B , C ,且 B 在 C 的左侧, ΔABC 有一个内角为 60 ° .
(1)求抛物线的解析式;
(2)若 MN 与直线 y = - 2 3 x 平行,且 M , N 位于直线 BC 的两侧, y 1 > y 2 ,解决以下问题:
①求证: BC 平分 ∠ MBN ;
②求 ΔMBC 外心的纵坐标的取值范围.
空地上有一段长为 a 米的旧墙 MN ,某人利用旧墙和木栏围成一个矩形菜园 ABCD ,已知木栏总长为100米.
(1)已知 a = 20 ,矩形菜园的一边靠墙,另三边一共用了100米木栏,且围成的矩形菜园面积为450平方米.如图1,求所利用旧墙 AD 的长;
(2)已知 0 < a < 50 ,且空地足够大,如图2.请你合理利用旧墙及所给木栏设计一个方案,使得所围成的矩形菜园 ABCD 的面积最大,并求面积的最大值.