已知椭圆:的离心率为,其长轴长与短轴长的和等于6.(1)求椭圆的方程;(2)如图,设椭圆的上、下顶点分别为,,是椭圆上异于,的任意一点,直线,分别交轴于点,,若直线与过点,的圆相切,切点为,证明:线段的长为定值.
已知四棱锥的底面是平行四边形,,,面,且.若为中点,为线段上的点,且. (1)求证:平面; (2)求PC与平面PAD所成角的正弦值.
已知数列的前项和为,,若成等比数列,且时,. (1)求证:当时,成等差数列; (2)求的前n项和.
已知函数. (1)若,求的取值范围; (2)设△的内角A、B、C所对的边分别为a、b、c,已知为锐角,,,,求的值.
设函数,,, (1)若曲线与轴相切于异于原点的一点,且函数的极小值为,求的值; (2)若,且, ①求证:; ②求证:在上存在极值点.
如图,两条相交线段、的四个端点都在椭圆上,其中,直线的方程为,直线的方程为. (1)若,,求的值; (2)探究:是否存在常数,当变化时,恒有?