甲箱子里装有3个白球个黑球,乙箱子里装有个白球,2个黑球,在一次试验中,分别从这两个箱子里摸出一个球,若它们都是白球,则获奖(1) 当获奖概率最大时,求的值;(2)在(1)的条件下,班长用上述摸奖方法决定参加游戏的人数,班长有4次摸奖机会(有放回摸取),当班长中奖时已试验次数即为参加游戏人数,如4次均未中奖,则,求的分布列和.
已知函数. (1)求函数的单调递增区间; (2)若,求的值
已知. (1)若三点共线,求实数的值; (2)证明:对任意实数,恒有 成立
如图,已知抛物线焦点为,直线经过点且与抛物线相交于,两点 (Ⅰ)若线段的中点在直线上,求直线的方程; (Ⅱ)若线段,求直线的方程
已知函数,曲线在点处的切线是: (Ⅰ)求,的值; (Ⅱ)若在上单调递增,求的取值范围
如图,三棱锥中,, (Ⅰ)求证:; (Ⅱ)若,是的中点,求与平面所成角的正切值