在平面直角坐标系中,的边所在的直线方程是,(1)如果一束光线从原点射出,经直线反射后,经过点,求反射后光线所在直线的方程;(2)如果在中,为直角,求面积的最小值.
已知函数g(x)="aln" x·f(x)=x3 +x2+bx(1)若f(x)在区间[1,2]上不是单调函数,求实数b的范围;(2)若对任意x∈[1,e],都有g(x)≥-x2+(a+2)x恒成立,求实数a的取值范围;(3)当b=0时,设F(x)=,对任意给定的正实数a,曲线y=F(x)上是否存在两点P,Q,使得△POQ是以O(O为坐标原点)为直角顶点的直角三角形,而且此三角形斜边中点在y轴上?请说明理由.
已知椭圆C:=1(a>0,b>0)的离心率与双曲线=1的一条渐近线的斜率相等以原点为圆心,椭圆的短半轴长为半径的圆与直线sin·x+cos·y-l=0相切(为常数).(1)求椭圆C的方程;(2)若过点M(3,0)的直线与椭圆C相交TA,B两点,设P为椭圆上一点,且满足(O为坐标原点),当时,求实数t取值范围.
已知数列{an}满足a1>0,an+1=2-,。(1)若a1,a2,a3成等比数列,求a1的值;(2)是否存在a1,使数列{an}为等差数列?若存在,求出所有这样的a1,若不存在,说明理由。
如图(1),在三角形ABC中,BA=BC=2√乏,ZABC=900,点0,M,N分别为线段的中点,将AABO和AMNC分别沿BO,MN折起,使平面ABO与平面CMN都与底面OMNB垂直,如图(2)所示.(1)求证:AB//平面CMN;(2)求平面ACN与平面CMN所成角的余(3)求点M到平面ACN的距离.
以下茎叶图记录了甲、乙两组各三名同学在期末考试的数学成绩,乙组记录中有一个数字模糊,无法确认.假设这个数字具有随机性,并在图中以a表示.(1)若甲、乙两个小组的数学平均成绩相同,求a的值; (2)求乙组平均成绩超过甲组平均成绩的概率;(3)当a=2时,分别从甲、乙两组中各随机选取一名同学,设这两名同学成绩之差的绝对值为X,求随机变量X的分布列和数学期望,