某机械生产厂家每生产产品(百台),其总成本为(万元),其中固定成本为2.8万元,并且每生产1百台的生产成本为1万元(总成本=固定成本+生产成本).销售收入(万元)满足,假定生产的产品都能卖掉,请完成下列问题:(1)写出利润函数的解析式;(2)工厂生产多少台产品时,可使盈利最多?
如图,椭圆经过点,离心率,直线l的方程为. (1)求椭圆C的方程; (2)是经过右焦点的任一弦(不经过点),设直线与直线相交于点,记、、的斜率分别为、、.问:是否存在常数,使得? 若存在,求的值; 若不存在,请说明理由.
经销商经销某种农产品,在一个销售季度内,每售出1t该产品可获得利润500元,未售出的产品,每1t亏损300元.根据历史资料,得到销售季度内市场需求量的频率分布直方图,如图所示.经销商为下一个销售季度购进了130t该产品,以(单位:t,)表示下一个销售季度内的市场需求量,(单位:元)表示下一个销售季度内该农产品的销售利润. (1)将表示为的函数; (2)根据直方图估计利润不少于57000元的概率.
如图,在直棱柱 (1)证明:; (2)求直线所成角的正弦值.
设关于的一元二次方程. (1)若是从1,2,3这三个数中任取的一个数,是从0,1,2这三个数中任取的一个数,求上述方程有实根的概率; (2)若是从区间[0,3]中任取的一个数,是从区间[0,2]中任取的一个数,求上述方程有实根的概率.
已知命题 命题 若命题“”是真命题,求实数的取值范围.