【选修4-4:坐标系与参数方程】已知圆的参数方程为(,为参数),将圆上所有点的横坐标伸长到原来的倍,纵坐标不变得到曲线;以坐标原点为极点,以轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为.(1)求曲线的普通方程与曲线的直角坐标方程;(2)设为曲线上的动点,求点与曲线上点的距离的最小值,并求此时点的坐标.
在正三棱柱中,底面三角形ABC的边长为,侧棱的长为,D为棱的中点。 ①求证:∥平面 ②求二面角的大小 ③求点到平面的距离。
在锐角△ABC中,角A,B,C的对边分别为a,b,c,已知, ,且∥ ①求角B的大小②若b=1,求△ABC面积的最大值。
已知函数 (Ⅰ)若在上单调递增,求的取值范围; (Ⅱ)若定义在区间D上的函数对于区间D上的任意两个值总有以下不等式成立,则称函数为区间D上的“下凸函数”. 试证当时,为“下凸函数”.
中心在原点,焦点在x轴上的椭圆C的离心率为,且经过点P. (1)求C的标准方程; (2)直线与C交于A、B两点,M为AB中点,且AB=2MP.请问直线是否经过某个定点,如果经过定点,求出点的坐标;如果不过定点,请说明理由.
已知. (1)求极值; (2)