集合,,且实数.(1)证明:若,则;(2)是否存在实数,满足且?若存在,求出,的值,不存在说明理由.
(本小题满分12分)定义在上的函数,其中是自然对数的底数,.(1) 若函数在点处连续,求的值;(2) 若函数为上的单调函数,求实数的取值范围,并判断此时函数在上是否为单调函数.
(本小题满分12分)某学校要用鲜花布置花圃中五个不同区域,要求同一区域上用同一种颜色的鲜花,相邻区域使用不同颜色的鲜花.现有红、黄、蓝、白、紫五种不同颜色的鲜花可供任意选择.(1)当区域同时用红色鲜花时,求布置花圃的不同方法的种数;(2)求恰有两个区域用红色鲜花的概率;(3)记为花圃中用红色鲜花布置的区域的个数,求随机变量的分布列及其数学期望.
(本小题满分12分)已知中,,,设,并记.(1)求函数的解析式及其定义域;(2)设函数,若函数的值域为,试求正实数的值.
(本小题满分10分)选修4—5:不等式选讲已知函数.(Ⅰ)当时,求函数的最小值;(Ⅱ)当函数的定义域为时,求实数的取值范围。
本小题满分10分)选修4-4:坐标系于参数方程已知圆,其圆心的极坐标为,半径为。(Ⅰ)求过极点的弦的中点的轨迹方程,并说明是什么曲线;(Ⅱ)已知直线过极点,且极坐标方程为,求圆心到直线的距离。[来