某市努力改造空气质量,近年来空气质量明显好转,根据市环境保护局公布的2006—2010这五年各年的全年空气质量优良的天数,绘制折线图如图所示,根据图中的信息回答: (1)这五年的全年空气质量优良天数的中位数是 ,极差是 ; (2)这五年的全年空气质量优良天数与它前一年相比较,增加最多的是 年,(填写年份) (3)求这五年的全年空气质量优良天数的平均数。
2014年6月,某中学以“我最喜爱的书籍”为主题,对学生最喜爱的一种书籍类型进行随机抽样调查,收集整理数据后,绘制出以下两幅未完成的统计图,请根据图①和图②提供的信息,解答下列问题:(1)在这次抽样调查中,一共调查了多少名学生?(2)请把折线统计图(图①)补充完整;(3)如果这所中学共有学生1800名,那么请你估计最喜爱科普类书箱的学生人数.
如图,在平行四边形ABCD中,AE是BC边上的高,将△ABE沿BC方向平移,使点E与点C重合,得△GFC. (1)求证:BE=DG; (2)若∠B=60°,当BC= AB时,四边形ABFG是菱形; (3)若∠B=60°,当BC= AB时,四边形AECG是正方形.
如图,一个直角三角形纸片的顶点A在∠MON的边OM上移动,移动过程中始终保持AB⊥ON于点B,AC⊥OM于点A.∠MON的角平分线OP分别交AB、AC于D、E两点.(1)点A在移动的过程中,线段AD和AE有怎样的数量关系,并说明理由.(2)点A在移动的过程中,若射线ON上始终存在一点F与点A关于OP所在的直线对称,猜想线段DF和AE有怎样的关系,并说明理由.(3)若∠MON=45°,猜想线段AC、AD、OC之间有怎样的数量关系,只写出结果即可.不用证明.
我们引入定义:到三角形的两个顶点距离相等的点,叫做此三角形的准外心.举例:如图1,若PA=PB,则点P为△ABC的准外心.应用:如图2,CD为等边三角形ABC的高,准外心P在高CD上,且PD=AB,求∠APB的度数.探究:已知△ABC为直角三角形,斜边BC=5,AB=3,准外心P在AC边上,试探究PA的长.
由于大风,山坡上的一棵树甲被从点A处拦腰折断,如图所示,其树恰好落在另一棵树乙的根部C处,已知AB = 1米,BC = 5米,两棵树的株距(两棵树的水平距离)为3米,在点A有一只蚂蚁想尽快爬到位于B、C两点之间的D处,且CD=0.1米,问它怎样走最近?为什么?