某商场销售一种西装和领带,西装每套定价500元,领带每条定价60元.“国庆节”期间商场决定开展促销活动,活动期间向客户提供两种优惠方案.方案一:买一套西装送一条领带;方案二:西装和领带都按定价的90%付款.现某客户要到该商场购买西装20套,领带x条(x>20).(1)若该客户按方案一购买,需付款______________元.(用含x的代数式表示)若该客户按方案二购买,需付款_____________元.(用含x的代数式表示)(2)若x=30,通过计算说明此时按哪种方案购买较为合算?
甲袋中装有4个相同的小球,分别标有3,4,5,6;乙袋中装有3个相同的小球,分别标有7,8,9.芳芳和明明用摸球记数的方法在如图所示的正六边形 ABCDEF的边上做游戏,游戏规则为:游戏者从口袋中随机摸出一个小球,小球上的数字是几,就从顶点 A按顺时针方向连续跳动几个边长,跳回起点者获胜;芳芳只从甲袋中摸出一个小球,明明先后从甲、乙口袋中各摸出一个小球.如:先后摸出标有4和7的小球,就先从点 A按顺时针连跳4个边长,跳到点 E,再从点 E顺时针连跳7个边长,跳到点 F.
分别求出芳芳、明明跳回起点 A的概率,并指出游戏规则是否公平.
如图,在平面直角坐标系中,抛物线的顶点为 A(1,﹣4),且与 x轴交于 B、 C两点,点 B的坐标为(3,0).
(1)写出 C点的坐标,并求出抛物线的解析式;
(2)观察图象直接写出函数值为正数时,自变量的取值范围.
已知二次函数 y= ax 2﹣2 ax+ c( a<0)的最大值为4,且抛物线过点( 7 2 ,﹣ 9 4 ,点 P( t,0)是 x轴上的动点,抛物线与 y轴交点为 C,顶点为 D.
(1)求该二次函数的解析式,及顶点 D的坐标;
(2)求| PC﹣ PD|的最大值及对应的点 P的坐标;
(3)设 Q(0,2 t)是 y轴上的动点,若线段 PQ与函数 y= a| x| 2﹣2 a| x|+ c的图象只有一个公共点,求 t的取值.
如图,已知 AD是△ ABC的外角∠ EAC的平分线,交 BC的延长线于点 D,延长 DA交△ ABC的外接圆于点 F,连接 FB, FC.
(1)求证:∠ FBC=∠ FCB;
(2)已知 FA• FD=12,若 AB是△ ABC外接圆的直径, FA=2,求 CD的长.
已知反比例函数 y= k x 的图象在二四象限,一次函数为 y= kx+ b( b>0),直线 x=1与 x轴交于点 B,与直线 y= kx+ b交于点 A,直线 x=3与 x轴交于点 C,与直线 y= kx+ b交于点 D.
(1)若点 A, D都在第一象限,求证: b>﹣3 k;
(2)在(1)的条件下,设直线 y= kx+ b与 x轴交于点 E与 y轴交于点 F,当 ED EA = 3 4 且△ OFE的面积等于 27 2 时,求这个一次函数的解析式,并直接写出不等式 k x > kx+ b的解集.