(本小题满分12分)某投资公司计划投资A,B两种金融产品,根据市场调查与预测,A产品的利润与投资金额的函数关系为,B产品的利润与投资金额的函数关系为,(注:利润与投资金额单位:万元) (1) 该公司已有100万元资金,并全部投入A,B两种产品中,其中万元资金投入A产品, 试把A,B两种产品利润总和表示为的函数,并写出定义域; (2) 试问:怎样分配这100万元资金,才能使公司获得最大利润?其最大利润为多少万元?
在△ABC中,顶点A,B,动点D,E满足:①;②,③共线. (Ⅰ)求△ABC顶点C的轨迹方程; (Ⅱ)是否存在圆心在原点的圆,只要该圆的切线与顶点C的轨迹有两个不同交点M,N,就一定有,若存在,求该圆的方程;若不存在,请说明理由.
如图,在四棱锥S-ABCD中,AB⊥AD,AB∥CD,CD=3AB=3,平面SAD⊥平面ABCD,E是线段AD上一点,AE=ED=,SE⊥AD. (Ⅰ)证明:平面SBE⊥平面SEC; (Ⅱ)若SE=1,求直线CE与平面SBC所成角的正弦值.
第30届夏季奥运会将于2012年7月27日在伦敦举行,当地某学校招募了8名男志愿者和12名女志愿者。将这20名志愿者的身高编成如下茎叶图(单位:cm):若身高在180cm以上(包括180cm)定义为“高个子”,身高在180cm以下(不包括180cm)定义为“非高个子”,且只有“女高个子”才能担任“礼仪小姐”。 (I)如果用分层抽样的方法从“高个子”和“非高个子”中抽取5人,再从这5人中选2人,那么至少有一人是“高个子”的概率是多少? (Ⅱ)若从所有“高个子”中选3名志愿者,用X表示所选志愿者中能担任“礼仪小姐”的人数,试写出X的分布列,并求X的数学期望。
已知等差数列满足:. (Ⅰ)求的通项公式; (Ⅱ)若(),求数列的前n项和.
已知F1(2,0),F2(2,0),点P满足|PF1|-|PF2|=2,记点P的轨迹为S,过点F2作直线与轨迹S交于P、Q两点,过P、Q作直线x=的垂线PA、QB,垂足分别为A、B,记λ=|AP|·|BQ|. (1)求轨迹S的方程; (2)设点M(1,0),求证:当λ取最小值时,△PMQ的面积为9.