某初级中学共有学生2 000名,各年级男、女生人数如下表:
已知在全校学生中随机抽取1名,抽到初二年级女生的概率是0.19. (1)求x的值. (2)现用分层抽样的方法在全校抽取48名学生,问应在初三年级抽取多少名? (3)已知y≥245,z≥245,求初三年级中女生比男生多的概率.
(本小题满分12分) 如图,在四棱锥中,底面是正方形,底面,,点是的中点,且交于点. (Ⅰ)求证:平面平面; (Ⅱ)求二面角的余弦值.
(本小题满分12分) 设:;:.若是的必要而不充分条件,求实数的取值范围.
(本小题满分12分) 函数部分图象如图所示. (Ⅰ)求的最小正周期及解析式; (Ⅱ)设,求函数在区间上的最大值和最小值.
对于函数,若时,恒有成立,则称函数是上 的“函数”. (Ⅰ)当函数是定义域上的“函数”时,求实数的取值范围; (Ⅱ)若函数为上的“函数”. (ⅰ)试比较与的大小(其中); (ⅱ)求证:对于任意大于的实数,,,,均有.
已知动点到点的距离等于点到直线的距离,点的轨迹为. (Ⅰ)求轨迹的方程; (Ⅱ)设为直线上的点,过点作曲线的两条切线,, (ⅰ)当点时,求直线的方程; (ⅱ)当点在直线上移动时,求的最小值.