(本小题满分14分)设双曲线C:(a>0,b>0)的一个焦点坐标为(,0),离心率, A、B是双曲线上的两点,AB的中点M(1,2).(1)求双曲线C的方程;(2)求直线AB方程;(3)如果线段AB的垂直平分线与双曲线交于C、D两点,那么A、B、C、D四点是否共圆?为什么?
本题共有2个小题,第1小题4分,第2小题4分.已知,,且函数图象上的任意两条对称轴之间距离的最小值是.(1)求的值;(2)将函数的图像向右平移个单位后,得到函数的图像,求函数的解析式,并求在上的最值.
本题共有2个小题,第1小题4分,第2小题4分.在中,内角的对边分别为.已知.(1)求的大小;(2)若,求的面积.
(本小题满分15分)设二次函数满足下列条件:①当时,其最小值为0,且成立;②当时,恒成立.(Ⅰ)求的值并求的解析式;(Ⅱ)求最大的实数,使得存在,只要当时,就有成立.
(本小题满分15分)如图,设抛物线方程为,M为直线上任意一点,过M引抛物线的切线,切点分别为A、B.若抛物线上一点P到直线l的距离为d,F为焦点时,.(Ⅰ)抛物线方程;(Ⅱ)求M到直线AB的距离的最小值.
(本小题满分15分)如图,已知正方形和矩形所在的平面互相垂直,,为线段的中点。(Ⅰ)求证:∥平面;(Ⅱ)求二面角的平面角的大小.