(本小题满分10分)【选修4-5:不等式选讲】设函数().(Ⅰ)证明:;(Ⅱ)若,求的取值范围.
正项数列中,前n项和为,且,且. (1)求数列的通项公式; (2)设,,证明.
设数列{}是等差数列,,时,若自然数满足,使得成等比数列,(1)求数列{}的通项公式;(2)求数列的通项公式及其前n项的和
设是三角形的内角,且和是关于方程的两个根. (1)求的值; (2)求的值.
已知为第三象限角,. (1)化简 (2)若,求的值.
设,在平面直角坐标系中,已知向量,向量,,动点的轨迹为E. (1)求轨迹E的方程,并说明该方程所表示曲线的形状; (2)已知,证明:存在圆心在原点的圆,使得该圆的任意一条切线与轨迹E恒有两个交点A,B,且(O为坐标原点),并求出该圆的方程; (3)已知,设直线与圆C:(1<R<2)相切于A1,且与轨迹E只有一个公共点B1,当R为何值时,|A1B1|取得最大值?并求最大值.