(本小题12分)已知椭圆的右焦点为,点在椭圆上.(Ⅰ)求椭圆的离心率;(Ⅱ)点在圆上,且在第一象限,过作圆的切线交椭圆于,两点,求证:△的周长是定值.
如图,在边长为1的等边△ABC中,D、E分别为边AB、AC上的点,若A关于直线DE的对称点A1恰好在线段BC上, (1)①设A1B=x,用x表示AD;②设∠A1AB=θ∈[0º,60º],用θ表示AD (2)求AD长度的最小值.
设函数 (1)求函数的最小正周期; (2)设函数对任意,有,且当时,;求函数在上的解析式。
已知其中,,若图象中相邻的两条对称轴间的距离不小于。 (1)求的取值范围 (2)在中,a,b,c分别为角A,B,C的对边,。当取最大值时,f(A)=1,求b,c的值。
(1)已知,,求的值; (2)已知. 求的值.
甲、乙等五名奥运志愿者被随机地分到四个不同的岗位服务,每个岗位至少有一名志愿者.(Ⅰ)求甲、乙两人同时参加岗位服务的概率;(Ⅱ)求甲、乙两人不在同一个岗位服务的概率;(Ⅲ)设随机变量为这五名志愿者中参加岗位服务的人数, 可取何值?请求出相应的值的分布列.