如图,四边形ABCD中,AD∥BC,BD平分∠ABC,试判断△ABD是否为等腰三角形,并说明理由.
在一个不透明的布袋里装有 4 个标有 1 , 2 , 3 , 4 的小球,它们的形状、大小完全相同.小明从布袋里随机取出一个小球,记下数字为 x ,小红在剩下的 3 个小球中随机取出一个小球,记下数字为 y ,这样确定了点 Q 的坐标 x , y .
(1)画树状图或列表,写出点 Q 所有可能的坐标;
(2)求点 Q x , y 在函数 y = - x + 5 的图象上的概率;
(3)小明和小红约定做一个游戏,其规则为:若 x , y 满足 xy > 6 则小明胜;若 x , y 满足 xy < 6 则小红胜,这个游戏公平吗?说明理由;若不公平,请写出公平的游戏规则.
甲、乙、丙三人之间相互传球,球从一个人手中随机传到另外一个人手中,共传球三次.
(1)若开始时球在甲手中,求经过三次传球后,球传回到甲手中的概率是多少?
(2)若乙想使球经过三次传递后,球落在自己手中的概率最大,乙会让球开始时在谁手中?请说明理由.
一个家庭有 3 个孩子.
(1)求这个家庭有 2 个男孩和 1 个女孩的概率;
(2)求这个家庭至少有一个男孩的概率.
2021年,黄冈、咸宁、孝感三市实行中考联合命题,为确保联合命题的公平性,决定采取三轮抽签的方式来确定各市选派命题组长的学科.第一轮,各市从语文、数学、英语三个学科中随机抽取一科;第二轮,各市从物理、化学、历史三个学科中随机抽取一科;第三轮,各市从道德与法治、地理、生物三个学科中随机抽取一科.
(1)黄冈在第一轮抽到语文学科的概率是_____.
(2)用画树状图或列表法求黄冈在第二轮和第三轮抽签中,抽到的学科恰好是历史和地理的概率.
已知矩形 ABCD 中, AB = 2 , AD = 5 .点 E 是 AD 边上一动点,连接 BE , CE ,以 BE 为直径作 ⊙ O ,交 BC 于点 F ,过点 F 作于 FH ⊥ CE 于点 H .
(1)当直线 FH 与 ⊙ O 相切时,求 AE 的长;
(2)当 FH / / BE 时,求 AE 的长;
(3)若线段 FH 交 ⊙ O 于点 G ,在点 E 运动过程中, △ OFG 能否成为等腰直角三角形?如果能,求出此时 AE 的长,如果不能,说明理由.