如图,在平面直角坐标系中,菱形ABCD的顶点C与原点O重合,点B在y轴的正半轴上,点A在函数y=(k>0,x>0)的图象上,点D的坐标为(4,3).(1)求k的值;(2)若将菱形ABCD沿x轴正方向平移,当菱形的顶点D落在函数y=(k>0,x>0)的图象上时,求菱形ABCD沿x轴正方向平移的距离.
计算:
和是绕点旋转的两个相似三角形,其中与、与为对应角. (1)如图1,若和分别是以与为顶角的等腰直角三角形,且两三角形旋转到使点、、在同一条直线上的位置时,请直接写出线段与线段的关系; (2)若和为含有角的直角三角形,且两个三角形旋转到如图2的位置时,试确定线段与线段的关系,并说明理由; (3)若和为如图3的两个三角形,且=,,在绕点旋转的过程中,直线与夹角的度数是否改变?若不改变,直接用含、的式子表示夹角的度数;若改变,请说明理由.
如图,在平面直角坐标系中,二次函数的图象经过点,顶点为. (1)求这个二次函数的解析式; (2)若点的坐标为,连接,过点作,垂足为点.当点在直线上,且满足时,求点的坐标.
如图,在平面直角坐标系中,的外接圆与轴交于点,,求的长.
(1)如图1,请你类比直线和一个圆的三种位置关系,在图1的①、②、③中,分别各画出一条直线,使它与两个圆都相离、与两个圆都相切、与一个圆相离且与另一个圆相交,并在图1的④中也画上一条直线,使它与两个圆具有不同于前面3种情况的位置关系; (2)如图2,点、在直线MN上,AB=11厘米,、的半径均为1厘米.以每秒2厘米的速度自左向右运动,与此同时,的半径也不断增大,其半径(厘米)与时间t(秒)之间的关系式为 .请直接写出点出发后多少秒两圆内切?