在正方形ABCD中,点E,F分别在边BC,CD上,且∠EAF=∠CEF=45°.(1)将△ADF绕着点A顺时针旋转90°,得到△ABG(如图①),求证:△AEG≌△AEF;(2)若直线EF与AB,AD的延长线分别交于点M,N(如图②),求证:;(3)将正方形改为长与宽不相等的矩形,若其余条件不变(如图③),请你直接写出线段EF,BE,DF之间的数量关系.
如图,某风景区的湖心岛有一凉亭A,其正东方向有一棵大树B,小明想测量A、B之间的距离,他从湖边的C处测得A在北偏西45°方向上,测得B在北偏东32°方向上,且量得B、C之间的距离为100米,根据上述测量结果,请你帮小明计算A、B之间的距离是多少?(结果精确到1米.参考数据:sin32°=0.5299,cos32°=0.8480)
如图,一次函数与反比例函数的图象交于A(1,m)、B(4,n)两点.(1)求A、B两点的坐标和反比例函数的解析式;(2)根据图象,直接写出当y>y时x的取值范围;(3)求△AOB的面积.
如图1,△ABC中,BC=25,BC边上的高为20,将AB,AC分别n等分,连接两边对应的等分点,以这些连接线为一边做矩形,使这些矩形的边B1C1,B2C2,B3C3……的对应边分别为 B2C2,B3C3,B4C4……(1)若n=5,如图2,求B3C3为一边的矩形的面积;(2)若n=5,求所有矩形的面积和;(3)当分为n等分时,你能用含有n的表达式表示所有矩形的面积和吗?
如图,一次函数的图象与反比例函数的图象交于点P,点P在第一象限.PA⊥x轴于点A,PB⊥y轴于点B.一次函数的图象分别交轴、轴于点C、D,且S△PBD=4,.(1)求点D的坐标;(2)求一次函数与反比例函数的解析式;(3)根据图象写出当时,一次函数的值大于反比例函数的值的的取值范围.
在平面直角坐标系xoy中,等腰三角形ABC的三个顶点A(0,1),点B在x轴的正半轴上,∠ABO=30°,点C在y轴上. (1)直接写出点C的坐标为 ; (2)点P关于直线AB的对称点P′在x轴上,AP=1,在图中标出点P的位置并说明理由; (3)在(2)的条件下,在y轴上找到一点M,使PM+BM的值最小,则这个最小值为 .