现正是闽北特产杨梅热销的季节,某水果零售商店分两批次从批发市场共购进杨梅40箱,已知第一、二次进货价分别为每箱50元、40元,且第二次比第一次多付款700元.(1)设第一、二次购进杨梅的箱数分别为a箱、b箱,求a,b的值;(2)若商店对这40箱杨梅先按每箱60元销售了x箱,其余的按每箱35元全部售完.①求商店销售完全部杨梅所获利润y(元)与x(箱)之间的函数关系式;②当x的值至少为多少时,商店才不会亏本.(注:按整箱出售,利润=销售总收入﹣进货总成本)
已知反比例函数y=(m为常数,且m≠5). (1)若在其图象的每个分支上,y随x的增大而增大,求m的取值范围; (2)若其图象与一次函数y=﹣x+1图象的一个交点的纵坐标是3,求m的值.
如图,一次函数y=kx+b与反比例函数y=(x>0)的图像交于A(m,6),B(3,n)两点. (1)求一次函数的解析式; (2)根据图像直接写出使kx+b<成立的x的取值范围; (3)求△AOB的面积.
“低碳生活,绿色出行”的理念正逐渐被人们所接受,越来越多的人选择骑自行车上下班.王叔叔某天骑自行车上班从家出发到单位过程中行进速度v(米/分钟)随时间t(分钟)变化的函数图象大致如图所示,图象由三条线段OA、AB和BC组成.设线段OC上有一动点T(t,0),直线l左侧部分的面积即为t分钟内王叔叔行进的路程s(米). (1)①当t=2分钟时,速度v= 米/分钟,路程s= 米; ②当t=15分钟时,速度v= 米/分钟,路程s= 米. (2)当0≤t≤3和3<t≤15时,分别求出路程s(米)关于时间t(分钟)的函数解析式; (3)求王叔叔该天上班从家出发行进了750米时所用的时间t.
一次函数与反比例函数的图象相交于A(﹣1,4),B(2,n)两点,直线AB交x轴于点D. (1)求一次函数与反比例函数的表达式; (2)过点B作BC⊥y轴,垂足为C,连接AC交x轴于点E,求△AED的面积S.
如图1所示,某乘客乘高速列车从甲地经过乙地到丙地,列车匀速行驶,图2为列车离乙地路程y(千米)与行驶时间x(小时)时间的函数关系图象. (1)填空:甲、丙两地距离 千米. (2)求高速列车离乙地的路程y与行驶时间x之间的函数关系式,并写出x的取值范围.