如图,过原点的直线和与反比例函数的图象分别交于两点A,C和B,D,连结AB,BC,CD,DA. (1)四边形ABCD一定是 四边形;(直接填写结果) (2)四边形ABCD可能是矩形吗?若可能,试求此时和之间的关系式;若不可能,说明理由; (3)设P(,),Q(,)()是函数图象上的任意两点,,,试判断,的大小关系,并说明理由.
如图,平面直角坐标系xOy中,一次函数y=-x+b(b为常数,b>0)的图象与x轴、y轴分别相交于点A、B,半径为4的⊙O与x轴正半轴相交于点C,与y轴相交于点D、E,点D在点E上方. (1)若直线AB与有两个交点F、G. ①求∠CFE的度数; ②用含b的代数式表示FG2,并直接写出b的取值范围; (2)设b≥5,在线段AB上是否存在点P,使∠CPE=45°?若存在,请求出P点坐标;若不存在,请说明理由.
如图,已知:点B(3,3)在双曲线y=(x>0)上,点D在双曲线y=-(x<0)上,点A和点C分别在x轴,y轴的正半轴上,且点A,B,C,D构成的四边形为正方形.求: (1)k的值; (2)点A的坐标.
【阅读材料】己知,如图1,在面积为S的△ABC中,BC=a,AC=b,AB=c,内切⊙O的半径为r.连接OA、OB、OC,△ABC被划分为三个小三角形. ∵S=S△OBC+S△OAC+S△OAB=BC·r+AC·r+AB·r=a·r+b·r+c·r=(a+b+c)r ∴ (1)【类比推理】如图2,若面积为S的四边形ABCD存在内切圆(与各边都相切的圆),各边长分别为AB=a,BC=b,CD=c,AD=d,求四边形的内切圆半径r的值; (2)【理解应用】如图3,在Rt△ABC中,内切圆O的半径为r,⊙O与△ABC分别相切于D、E和F,己知AD=3,BD=2,求r的值.
某同学报名参加学校运动会,有以下5个项目可供选择: 径赛项目:100m,200m,400m(分别用A1、A2、A3表示); 田赛项目:跳远,跳高(分别用B1、B2表示). (1)该同学从5个项目中任选一个,恰好是田赛项目的概率为; (2)该同学从5个项目中任选两个,利用树状图或列表列举出所有可能出现的结果,并求恰好是—个田赛项目和一个径赛项目的概率.
如图,己知:反比例函数的图象与一次函数y=mx+b的图象交于点A(1,4),点B(-4,n). (1)求一次函数和反比例函数的解析式; (2)求△OAB的面积.