阅读材料:善于思考的小军在解方程组时,采用了一种“整体代换”的解法:将方程②变形:4x+10y+y="5" 即2(2x+5y)+y=5③把方程①带入③得:2×3+y=5,∴y=﹣1 把y=﹣1代入①得x=4,∴方程组的解为.请你解决以下问题:(1)模仿小军的“整体代换”法解方程组;(2)已知x,y满足方程组.(i)求的值;(ii)求的值.
如图,正方形ABCD中,E与F分别是AD、BC上一点,在①AE=CF、②BE∥DF、③∠1=∠2中,请选择其中一个条件,证明BE=DF.
若关于x的一元二次方程x2+4x+2k=0有两个实数根,求k的取值范围及k的非负整数值.
解方程:(1)x2+4x+1="0" (2)(x﹣1)2+2x(x﹣1)=0.
如图,已知在平面直角坐标系中,四边形ABCO是梯形,且BC∥AO,其中A(6,0),B(3,),∠AOC=60°,动点P从点O以每秒2个单位的速度向点A运动,动点Q也同时从点B沿B→C→O的线路以每秒1个单位的速度向点O运动,当点P到达A点时,点Q也随之停止,设点P,Q运动的时间为t(秒). (1)求点C的坐标及梯形ABCO的面积; (2)当点Q在CO边上运动时,求△OPQ的面积S与运动时间t的函数关系式,并写出自变量t的取值范围; (3)以O,P,Q为顶点的三角形能构成直角三角形吗?若能,请求出t的值;若不能,请说明理由.
如图,以△ABC的BC边上一点O为圆心的圆,经过A,B两点,且与BC边交于点E,D为BE的下半圆弧的中点,连结AD交BC于F,若AC=FC. (1)求证:AC是⊙O的切线: (2)若BF=8,DF=,求⊙O的半径r.