(·湖北衡阳,27题,分)(本小题满分10分)如图,顶点M在轴上的抛物线与直线相交于A、B两点,且点A在轴上,点B的横坐标为2,连结AM、BM.(1)求抛物线的函数关系式;(2)判断△ABM的形状,并说明理由;(3)把抛物线与直线的交点称为抛物线的不动点.若将(1)中抛物线平移,使其顶点为(,),当满足什么条件时,平移后的抛物线总有不动点?
如图,矩形ABCD中,AB=8,AD=10. (1)求矩形ABCD的周长; (2)E是CD上的点,将△ADE沿折痕AE折叠,使点D落在BC边上点F处. ①求DE的长; ② 点P是线段CB延长线上的点,连接PA,若△PAF是等腰三角形,求PB的长. (3)M是AD上的动点,在DC 上存在点N,使△MDN沿折痕MN折叠,点D落在BC边上点T处,求线段CT长度的最大值与最小值之和.
已知,在△ABC中,∠BAC=90°,AB=AC,CE平分∠ACB交AB于点E。 (1)∠B= 度. (2)如图9,若点D在斜边BC上,DM垂直平分BE,垂足为M。求证:BD=AE; (3)如图10,过点B作BF⊥CE,交CE的延长线与点F。若CE=6,求△BEC的面积。
点P、Q分别是边长为4cm的等边△ABC的边AB、BC上的动点,点P从顶点A,点Q从顶点B同时出发,它们的速度都是1cm/s。 (1)经过1秒时,连接AQ、CP交于点M,则在P、Q运动的过程中,求证:,并求出∠CMQ的度数; (2)经过几秒时,△PBQ是直角三角形?
如图,在笔直的公路L的同侧有A、B两个村庄,已知A、B两村分别到公路的距离AC=3km,BD=4km。现要在公路上建一个汽车站P,使该车站到A、B两村的距离相等, (1)试用直尺和圆规在图中作出点P;(保留作图痕迹) (2)若连接AP、BP,测得∠APB=90°,求A村到车站的距离
如图所示,四边形ABCD中,AB=4,BC=3,AD=13,CD=12,∠B=90°,求该四边形的面积.