(·湖北衡阳,27题,分)(本小题满分10分)如图,顶点M在轴上的抛物线与直线相交于A、B两点,且点A在轴上,点B的横坐标为2,连结AM、BM.(1)求抛物线的函数关系式;(2)判断△ABM的形状,并说明理由;(3)把抛物线与直线的交点称为抛物线的不动点.若将(1)中抛物线平移,使其顶点为(,),当满足什么条件时,平移后的抛物线总有不动点?
梯形ABCE中,AD∥BC,DC⊥BC,CE⊥AB于点E,点F在边CD上,且BE•CE=BC•CF. (1)求证:AE•CF=BE•DF; (2)若点E为AB中点,求证:AD•BC=2EC2-BC2.
如图,已知⊙0是△ABC的外接圆,半径长为5,点D、E分别是边AB和边AC是中点,AB=AC,BC=6.求∠OED的正切值.
甲、乙两名运动员进行长跑训练,两人距终点的路程y(米)与跑步时间x之间的函数图象如图所示,根据图象所提供的信息解答问题: (1)他们在进行米的长跑训练,在0<x<15的时段内,速度较快的人是; (2)求甲距终点的路程y(米)和跑步时间x之间的函数关系式; (3)当x=15时,两人相距多少米?在15<x<20的时段内,求两人速度之差.
解不等式组:,且写出使不等式组成立的所有整数.
先化简,再求值:,其中.