(眉山)(本小题满分11分)如图,已知抛物线的顶点D的坐标为(1,),且与x轴交于A、B两点,与y轴交于C点,A点的坐标为(4,0).P点是抛物线上的一个动点,且横坐标为m.(l)求抛物线所对应的二次函数的表达式;(2)若动点P满足∠PAO不大于45°,求P点的横坐标m的取值范围;(3)当P点的横坐标时,过p点作y轴的垂线PQ,垂足为Q.问:是否存在P点,使∠QPO=∠BCO?若存在,请求出P点的坐标;若不存在,请说明理由.
如图,Rt△ABC中,∠ACB=90°,AC=6 cm,BC=8 cm,动点P从点B出发,在BA边上以每秒5 cm的速度向点A匀速运动,同时动点Q从点C出发,在CB边上以每秒4 cm的速度向点B匀速运动,运动时间为t秒(0<t<2),连接PQ. (1)若△BPQ与△ABC相似,求t的值; (2)连接AQ、CP,若AQ⊥CP,求t的值; (3)试证明:PQ的中点在△ABC的一条中位线上.
九(1)班数学兴趣小组经过市场调查,整理出某种商品在第x(1≤x≤90)天的售价与销售量的相关信息如下表:
已知该商品的进价为每件30元,设销售该商品的每天利润为y元[ (1)求出y与x的函数关系式; (2)问销售该商品第几天时,当天销售利润最大,最大利润是多少? (3)该商品在销售过程中,共有多少天每天销售利润不低于4800元?请直接写出结果.
如图,AB是⊙O的直径,C、P是上两点,AB=13,AC=5, (1)如图(1),若点P是的中点,求PA的长; (2)如图(2),若点P是的中点,求PA得长 .
袋中装有大小相同的2个红球和2个绿球, (1)先从袋中摸出1个球后放回,混合均匀后再摸出1个球, ① 求第一次摸到绿球,第二次摸到红球的概率; ② 求两次摸到的球中有1个绿球和1个红球的概率; (2)先从袋中摸出1个球后不放回,再摸出1个球,则两次摸到的球中有1个绿球和1个红球的概率是多少?请直接写出结果.
如图,在直角坐标系中,A(0,4)、C(3,0), (1)① 画出线段AC关于y轴对称线段AB; ② 将线段CA绕点C顺时针旋转一个角,得到对应线段CD,使得AD∥x轴,请画出线段CD; (2)若直线y=kx平分(1)中四边形ABCD的面积,请直接写出实数k的值.