(眉山)(本小题满分9分)如图,在矩形ABCD中,E是AB边的中点,沿EC对折矩形ABCD,使B点落在点P处,折痕为EC,连结AP并延长AP交CD于F点,(1)求证:四边形AECF为平行四边形;(2)若△AEP是等边三角形,连结BP,求证:△APB≌△EPC;(3)若矩形ABCD的边AB=6,BC=4,求△CPF的面积.
如图,在的正方形网格中,△OAB的顶点分别为O(0,0),A(1,2),B(2,-1).⑴以点O(0,0)为位似中心,按比例尺(OA︰OA’)1:3在位似中心的同侧将△OAB放大为△OA’B’,放大后点A、B的对应点分别为A’、B’ .画出△OA’B’,并写出点A’、B’的坐标:A’( ),B’( ).⑵在⑴中,若为线段上任一点,写出变化后点的对应点的坐标( ).
如图(1),在平面直角坐标系中,矩形ABCO,B点坐标为(4,3),抛物线y=x2+bx+c经过矩形ABCO的顶点B、C,D为BC的中点,直线AD与y轴交于E点,点F在直线AD上且横坐标为6.(1)求该抛物线解析式并判断F点是否在该抛物线上;(2)如图,动点P从点C出发,沿线段CB以每秒1个单位长度的速度向终点B运动;同时,动点M从点A出发,沿线段AE以每秒个单位长度的速度向终点E运动.过点P作PH⊥OA,垂足为H,连接MP,MH.设点P的运动时间为t秒.①问EP+PH+HF是否有最小值,如果有,求出t的值;如果没有,请说明理由.②若△PMH是等腰三角形,求出此时t的值.
在△ABC中,∠A=90°,AB=4,AC=3,M是AB上的动点(不与A、B重合),过M作MN//BC交AC于点N,以MN为直径作⊙O,设AM=x(1)用含x的代数式表示△AMN的面积S;(2)M在AB上运动,当⊙O与BC相切时(如图①),求x的值;(3)M在AB上运动,当⊙O与BC相交时(如图②),在⊙O上取一点P,使PM//AC,连接PN,PM交BC于E,PN交BC于点F,设梯形MNFE的面积为y,求y关于x的函数关系式。
已知,△ABC为等边三角形,点D为直线BC上一动点(点D不与B、C重合).以AD为边作菱形ADEF,使∠DAF=60°,连接CF.(1)如图1,当点D在边BC上时,①求证:∠ADB=∠AFC;②请直接判断结论∠AFC=∠ACB+∠DAC是否成立;(2)如图2,当点D在边BC的延长线上时,其他条件不变,结论∠AFC=∠ACB+∠DAC是否成立?若不成立,请写出∠AFC、∠ACB、∠DAC之间存在的数量关系,并写出证明过程;(3)如图3,当点D在边CB的延长线上时,且点A、F分别在直线BC的异侧,其他条件不变,请补全图形,并直接写出∠AFC、∠ACB、∠DAC之间存在的等量关系.
黄岩岛是我国南沙群岛的一个小岛,渔产丰富.一天某渔船离开港口前往该海域捕鱼.捕捞一段时间后,发现一外国舰艇进入我国水域向黄岩岛驶来,渔船向渔政部门报告,并立即返航.渔政船接到报告后,立即从该港口出发赶往黄岩岛.下图是渔政船及渔船与港口的距离s和渔船离开港口的时间t之间的函数图象.(假设渔船与渔政船沿同一航线航行)(1)直接写出渔船离港口的距离s和它离开港口的时间t的函数关系式.(2)求渔船和渔政船相遇时,两船与黄岩岛的距离.(3)在渔政船驶往黄岩岛的过程中,求渔船从港口出发经过多长时间与渔政船相距30海里?