(资阳)学校需要购买一批篮球和足球,已知一个篮球比一个足球的进价高30元,买两个篮球和三个足球一共需要510元.(1)求篮球和足球的单价;(2)根据实际需要,学校决定购买篮球和足球共100个,其中篮球购买的数量不少于足球数量的,学校可用于购买这批篮球和足球的资金最多为10500元.请问有几种购买方案?(3)若购买篮球x个,学校购买这批篮球和足球的总费用为y(元),在(2)的条件下,求哪种方案能使y最小,并求出y的最小值.
(年新疆、生产建设兵团)如图,四边形ABCD为菱形,点E为对角线AC上的一个动点,连结DE并延长交AB于点F,连结BE.(1)如图①,求证:∠AFD=∠EBC;(2)如图②,若DE=EC且BE⊥AF,求∠DAB的度数;(3)若∠DAB=90°且当△BEF为等腰三角形时,求∠EFB的度数(只写出条件与对应的结果)
(年江西省南昌市)我们把两条中线互相垂直的三角形称为“称为中垂三角形”,例如图1,图2,图3中,AF,BE是△ABC的中线,AF⊥BE,垂足为P,像△ABC这样的三角形均称为“中垂三角形”,设BC=a,AC=b,AB=c. 特例探索 (1)如图1,当∠ABE=45°,c=时,a= ,b= . 如图2,当∠ABE=30°,c=4时,a= ,b= . 归纳证明 (2)请你观察(1)中的计算结果,猜想,,三者之间的关系,用等式表示出来,并利用图3证明你发现的关系式. 拓展应用 (3)如图4,在▱ABCD中,点E、F、G分别是AD,BC,CD的中点,BE⊥EG,AD=,AB=3,求AF的长.
(年江西省南昌市)(1)如图1,纸片□ABCD中,AD=5,S□ABCD=15,过点A作AE⊥BC,垂足为E,沿AE剪下△ABE,将它平移至△DCE′ 的位置,拼成四边形AEE′D,则四边形AEE′D的形状为( ) A.平行四边形 B.菱形 C.矩形 D.正方形 (2)如图2,在(1)中的四边形纸片AEE′D中,在EE′上取一点F,使EF=4,剪下△AEF,将它平移至△DE′F′ 的位置,拼成四边形AFF′D. ① 求证四边形AFF′D是菱形; ② 求四边形AFF′D两条对角线的长.
(年贵州省遵义市)在Rt△ABC中,∠BAC=,D是BC的中点,E是AD的中点.过点A作AF∥BC交BE的延长线于点F.(1)求证:△AEF≌△DEB;(2)证明四边形ADCF是菱形;(3)若AC=4,AB=5,求菱形ADCFD的面积.
(年蒙自市初中学业水平第一次模拟测试)已知垂直平分,,,(1)证明是平行四边形;(2)若,,求的长.