已知:抛物线l1:y=﹣x2+bx+3交x轴于点A,B,(点A在点B的左侧),交y轴于点C,其对称轴为x=1,抛物线l2经过点A,与x轴的另一个交点为E(5,0),交y轴于点D(0,﹣).(1)求抛物线l2的函数表达式;(2)P为直线x=1上一动点,连接PA,PC,当PA=PC时,求点P的坐标;(3)M为抛物线l2上一动点,过点M作直线MN∥y轴,交抛物线l1于点N,求点M自点A运动至点E的过程中,线段MN长度的最大值.
先化简,再求值:,其中是方程的解.
如图,在中,,,,延长到使得,,连接,求的周长.
(本小题满分12分)如图,在平面直角坐标系中,以点C(1,1)为圆心,2为半径作圆,交x轴于A,B两点,开口向下的抛物线经过点A,B,且其顶点P在⊙C上. (1)求∠ACB的大小; (2)写出A,B两点的坐标; (3)试确定此抛物线的解析式; (4)在该抛物线上是否存在一点D,使线段OP与CD互相平分?若存在,求出点D的坐标;若不存在,请说明理由.
如图1,在平面直角坐标系中,O为坐标原点,P是反比例函数图象上任意一点,以P为圆心,PO为半径的圆与坐标轴分别交于点A、B.(本小题满分10分) (1)求证:线段AB为⊙P的直径; (2)求△AOB的面积; (3)如图2,Q是反比例函数图象上异于点P的另一点,以Q为圆心,QO为半径画圆与坐标轴分别交于点C、D,求证:DO·OC=BO·OA.
(本小题满分10分)如图:已知⊙O的直径CD为2,的度数为60°,点B是的中点,在直径CD上作出点P,使BP+AP的值最小,则BP+AP的最小值为多少?