如图,在平面直角坐标系中,△ABC的顶点A在x轴负半轴上,顶点C在x轴正半轴上,顶点B在第一象限,过点B作BD⊥y轴于点D,线段OA,OC的长是一元二次方程x2﹣12x+36=0的两根,BC=4,∠BAC=45°.(1)求点A,C的坐标;(2)反比例函数y=的图象经过点B,求k的值;(3)在y轴上是否存在点P,使以P,B,D为顶点的三角形与以P,O,A为顶点的三角形相似?若存在,请写出满足条件的点P的个数,并直接写出其中两个点P的坐标;若不存在,请说明理由.
.已知关于x的方程 (1)求证:不论k取什么实数值,这个方程总有实数根; (2)若等腰三角形ABC的一边长,另两边的长b,c恰好是这个方程的两根,求△ABC的周长。
. 阅读材料: 小明在学习二次根式后,发现一些含根号的式子可以写成另一个式子的平方,如3+2=(1+),善于思考的小明进行了以下探索: 设a+b=(m+n)(其中a、b、m、n均为正整数),则有a+b=m2+2n2+2mn, ∴a= m2+2n2,b=2mn.这样小明就找到了一种把部分a+b的式子化为平方式的方法. 请你仿照小明的方法探索并解决下列问题: (1)当a、b、m、n均为正整数时,若a+b=(m+n),用含m、n的式子分别表示a、b,得:a=,b= ; (2)利用所探索的结论,找一组正整数a、b、m、n填空:+ =(+ ); (3)若a+4=(m+n),且a、m、n均为正整数,求a的值.
先化简再计算:,其中x是一元二次方程的正数根.
A,B两地间的距离为15千米,甲从A地出发步行前往B地,20分钟后,乙从B地出发骑车前往A地,且乙骑车比甲步行每小时多走10千米。乙到达A地后停留40分钟,然后骑车按原路原速返回,结果甲、乙两人同时到达B地。请你就“甲从A地到B地步行所用时间”或“甲步行的速度”提出一个用分式方程解决的问题,并写出解题过程。
≠(公式法)