(·黑龙江绥化)如图,已知抛物线y=ax2+bx+c与x轴交于点A、B,与直线AC:y=-x-6交y轴于点C、D,点D是抛物线的顶点,且横坐标为-2.(1)求出抛物线的解析式。(2)判断△ACD的形状,并说明理由。(3)直线AD交y轴于点F,在线段AD上是否存在一点P,使∠ADC=∠PCF .若存在,直接写出点P的坐标;若不存在,说明理由。
D为△ABC的边AB上一点,且∠ADC=∠ACD.求证:∠ACB>∠B
如图,求证:∠A+∠B+∠C+∠D+∠E=180°
如右图,为修铁路需凿通隧道AC,测得∠A=50°,∠B=40°,AB="5" km,BC="4" km,若每天凿隧道0.3km,问几天才能把隧道凿通?
已知:如下图,△ABC中,CD⊥AB于D,AC=4,BC=3,DB=.(1)求DC的长;(2)求AD的长;(3)求AB的长;(4)求证:△ABC是直角三角形.
已知,如图,等边三角形ABC,AD为BC边上的高线,若AB=2,求△ABC的面积.