(·辽宁大连)如图,在平面直角坐标系中,矩形OABC的顶点A,C分别在x轴和y轴的正半轴上,顶点B的坐标为(2m,m),翻折矩形OABC,使点A与点C重合,得到折痕DE.设点B的对应点为F,折痕DE所在直线与y轴相交于点G,经过点C、F、D的抛物线为.(1)求点D的坐标(用含m的式子表示)(2)若点G的坐标为(0,-3),求该抛物线的解析式.(3)在(2)的条件下,设线段CD的中点为M,在线段CD上方的抛物线上是否存在点P,使PM=EA?若存在,直接写出P的坐标,若不存在,说明理由.
如图,为⊙O的直径,是弦,且于点E.连接、、.(1)求证:=. (2)若=,=,求⊙O的直径.
某市政府大力扶持大学生创业.李明在政府的扶持下投资销售一种进价为每件20元的护眼台灯.销售过程中发现,每月销售量y(件)与销售单价x(元)之间的关系可近似的看作一次函数:.(1)设李明每月获得利润为w(元)(,当销售单价定为多少元时,每月可获得最大利润?(2)如果李明想要每月获得2000元的利润,并且又要减少库存,那么销售单价应定为多少元?
已知二次函数(1)用配方法将化成的形式;(2)在平面直角坐标系中,画出这个二次函数的图象;(3)写出当x为何值时,y>0.
已知:,求代数式的值.
如图,等腰三角形ABC中,AC=BC,以BC为直径作⊙O交AB于点D,交AC于点G, DF⊥AC,垂足为F,交CB的延长线于点E.求证:直线EF是⊙O的切线;