(本小题满分12分)在平面直角坐标系中,已知圆过坐标原点且圆心在曲线上.(Ⅰ)若圆分别与轴、轴交于点、(不同于原点),求证:的面积为定值;(Ⅱ)设直线与圆交于不同的两点,且,求圆的方程;(Ⅲ)设直线与(Ⅱ)中所求圆交于点、, 为直线上的动点,直线,与圆的另一个交点分别为,,求证:直线过定点.
如图,正四棱锥中,,分别为的中点,设为线段上任意一点。 (Ⅰ)求证:; (Ⅱ)当直线与平面所成的角取得最大值时,求二面角的平面角的余弦值.
在中,内角所对的边长分别为,. (Ⅰ)求角的大小; (Ⅱ)已知不是钝角三角形,且,求的面积.
(本小题满分14分)已知为实数,对于实数和,定义运算“”:, 设. (Ⅰ)若在上为增函数,求实数的取值范围; (Ⅱ)若方程有三个不同的解,记此三个解的积为,求的取值范围.
(本小题满分15分)如图,设抛物线的焦点为,为抛物线的顶点.过作抛物线 的弦,直线,分别交直线于点,. (Ⅰ)当时,求的值; (Ⅱ)设直线的方程为,记的面积为,求关于的解析式.
(本小题满分15分)如图,已知平面,,,, 为等边三角形. (Ⅰ)求证:平面平面; (Ⅱ)求与平面所成角的正弦值.