本题共有3个小题,第1小题4分,第2小题5分,第3小题5分.设等比数列的前项的和为,公比为.(1)若成等差数列,求证:成等差数列;(2)若(为互不相等的正整数)成等差数列,试问数列中是否存在不同的三项成等差数列?若存在,写出两组这三项;若不存在,请说明理由;(3)若为大于的正整数.试问中是否存在一项,使得恰好可以表示为该数列中连续两项的和?请说明理由.
已知椭圆经过点,其离心率为,设直线与椭圆相交于两点. (Ⅰ)求椭圆的方程; (Ⅱ)已知直线与圆相切,求证:(为坐标原点); (Ⅲ)以线段为邻边作平行四边形,若点在椭圆上,且满足(为坐标原点),求实数的取值范围.
已知等差数列中,,公差;数列中,为其前n项和,满足: (Ⅰ)记,求数列的前项和; (Ⅱ)求证:数列是等比数列; (Ⅲ)设数列满足,为数列的前项积,若数列满足,且,求数列的最大值.
如图,中,是的中点,,.将沿折起,使点与图中点重合. (Ⅰ)求证:; (Ⅱ)当三棱锥的体积取最大时,求二面角的余弦值; (Ⅲ)在(Ⅱ)的条件下,试问在线段上是否存在一点,使与平面所成的角的正弦值为?证明你的结论.
已知函数,其中 (Ⅰ)求函数的定义域; (Ⅱ)若对任意恒有,试确定的取值范围.
设函数 (Ⅰ)当时,求的值域; (Ⅱ)已知中,角的对边分别为,若,,求面积的最大值.