本题共有3个小题,第1小题4分,第2小题5分,第3小题5分.设等比数列的前项的和为,公比为.(1)若成等差数列,求证:成等差数列;(2)若(为互不相等的正整数)成等差数列,试问数列中是否存在不同的三项成等差数列?若存在,写出两组这三项;若不存在,请说明理由;(3)若为大于的正整数.试问中是否存在一项,使得恰好可以表示为该数列中连续两项的和?请说明理由.
已知为数列的前项和,,. ⑴求数列的通项公式; ⑵数列中是否存在正整数,使得不等式对任意不小于的正整数都成立?若存在,求最小的正整数,若不存在,说明理由.
设为数列的前项和,, ⑴求常数的值; ⑵求证:数列是等差数列.
已知等差数列中,. ⑴求数列的通项公式; ⑵若数列满足,设,且,求的值.
已知为数列的前项和,;数列满足:,,其前项和为 ⑴求数列、的通项公式; ⑵设为数列的前项和,,求使不等式对都成立的最大正整数的值.
已知为等差数列的前项和,. 求证:数列是等差数列.