(本小题满分12分)如图,在四棱锥P﹣ABCD中,PC⊥底面ABCD,ABCD是直角梯形,AB⊥AD,AB∥CD,AB=2AD=2CD=PC=2.E是PB的中点.(1)求证:平面EAC⊥平面PBC;(2)求二面角P—AC—E的余弦值;(3)求直线PA与平面EAC所成角的正弦值.
(本小题满分12分)已知函数(R).(1)求的最小正周期和最大值;(2)若为锐角,且,求的值.
(本小题满分14分)已知集合是满足下列性质的函数的全体:在定义域内存在,使得成立。(Ⅰ)函数是否属于集合?说明理由;(Ⅱ)设函数,求的取值范围;(Ⅲ)设函数图象与函数的图象有交点,证明:函数.
(本小题满分14分)建造一容积为8深为2m的长方体形无盖水池,每池底和池壁造价各为120元和80元.(1)求总造价关于一边长x的函数解析式,并指出该函数的定义域;(2)判断(1)中函数在和上的单调性;(3)如何设计水池尺寸,才能使总造价最低;
(本小题满分14分)如图,在四棱锥P-ABCD中,底面ABCD是正方形,侧棱PD⊥底面ABCD,PD=DC,E是PC的中点,作EF⊥PB交PB于点F.(1)证明 PA//平面EDB;(2)证明PB⊥平面EFD;(3)求二面角C-PB-D的大小.
(本小题满分14分)如图所示,在棱长为2的正方体中,、分别为、的中点.(1)求证:;(2)求三棱锥的体积.