(本小题满分12分)如图,在四棱锥P﹣ABCD中,PC⊥底面ABCD,ABCD是直角梯形,AB⊥AD,AB∥CD,AB=2AD=2CD=PC=2.E是PB的中点.(1)求证:平面EAC⊥平面PBC;(2)求二面角P—AC—E的余弦值;(3)求直线PA与平面EAC所成角的正弦值.
如图,在四棱锥中,侧棱底面,底面为矩形,为上一点,,. (I)若为的中点,求证平面; (II)求三棱锥的体积.
在中,角所对的边分别为,且. (Ⅰ)求函数的最大值; (Ⅱ)若,,,求的值.
数列的前项组成集合,从集合中任取个数,其所有可能的个数的乘积的和为(若只取一个数,规定乘积为此数本身),记.例如:当时,,,;当时,,,. (Ⅰ)求; (Ⅱ)猜想,并用数学归纳法证明.
如图(1),等腰直角三角形的底边,点在线段上,于,现将沿折起到的位置(如图(2)). (Ⅰ)求证:; (Ⅱ)若,直线与平面所成的角为,求长.
某舞蹈小组有2名男生和3名女生.现从中任选2人参加表演,记为选取女生的人数,求的分布列及数学期望.