(本小题9分)如图,⊙O与割线AC交于点B,C,割线AD过圆心O,且∠DAC=30°.若⊙O的半径OB=5,AD=13,求弦BC的长.
从同一副扑克牌中选出7张,分为、两组,其中组是三张牌,牌面数字分别为1,2,3;组是四张牌,牌面数字分别为5,6,7,8.
(1)将组牌的背面都朝上,洗匀,随机抽出一张,求抽出的这张牌的牌面数字是3的概率;
(2)小亮与小涛商定了一个游戏规则:分别将、两组牌的背面都朝上,洗匀,再分别从、两组牌中各随机抽出一张,将这两张牌的牌面数字相加,若和为偶数,则小亮获胜;若和为奇数,则小涛获胜.请用列表或画树状图的方法说明这个游戏规则对双方是否公平.
在所挂物体质量不超过时,一弹簧的长度是所挂物体质量的一次函数,其图象如图所示.
(1)求与之间的函数表达式及该弹簧不挂物体时的长度;
(2)若该弹簧挂上一个物体后,弹簧长度为,求这个物体的质量.
新学期,小华和小明被选为升旗手,为了更好地完成升旗任务,他俩想利用测倾器和阳光下的影子来测量学校旗杆的高度.如图所示,旗杆直立于旗台上的点处,他们的测量方法是:首先,在阳光下,小华站在旗杆影子的顶端处,此时,量得小华的影长,小华身高;然后,在旗杆影子上的点处,安装测倾器,测得旗杆顶端的仰角为,量得,,旗台高.已知在测量过程中,点、、、在同一水平直线上,点、、在同一条直线上,、、均垂直于.求旗杆的高度.(参考数据:,,
今年植树节,某校开展了“植树造林,从我做起”的植树活动.该校参加本次植树活动的全体学生被分成了115个植树小组,按学校要求,每个植树小组至少植树10棵.经过一天的植树活动,校团委为了了解本次植树任务的完成情况,从这115个植树小组中随机抽查了10个小组,并对这10个小组植树的棵数进行了统计,结果如下:
根据以上提供的信息,解答下列问题:
(1)求所统计的这组数据的中位数和平均数;
(2)求抽查的这10个小组中,完成本次植树任务的小组所占的百分比;
(3)请你估计在本次植树活动中,该校学生共植树多少棵.
如图,在中,是边的中点,过点作,并与交于点,延长到点,使得,连接.
求证:.