如图,已知△ABC内接于⊙O,AD、AE分别平分∠BAC和△BAC的外角∠BAF,且分别交圆于点D、E.连接DE,CD,DE与BC相交于点G.(1)求证:DE是△ABC的外接圆的直径.(2)设OG=3,CD=2,求⊙O的半径.
已知:如图,在⊙O中,弦交于点,.求证:.
计算:
在平面直角坐标系中,抛物线过点,且与x轴交于A、B两点(点A在点B左侧),与y轴交于点C.点D的坐标为,连接CA,CB,CD. (1)求证:; (2)是第一象限内抛物线上的一个动点,连接DP交BC于点E. ①当△BDE是等腰三角形时,直接写出点E的坐标; ②连接CP,当△CDP的面积最大时,求点E的坐标.
如图,AB是⊙O的直径,弦CD⊥AB于点H,点G在弧BD上,连接AG,交CD于点K,过点G的直线交CD延长线于点E,交AB延长线于点F,且EG=EK. (1)求证:EF是⊙O的切线; (2)若⊙O的半径为13,CH=12,AC∥EF,求OH和FG的长.
如图,在△ABC中,∠B=90°,∠ACB=60°,AB=,AD⊥AC,连接CD.点E在AC上,,过点E作MN⊥AC,分别交AB、CD于点M、N. (1)求ME的长; (2)当AD=3时,求四边形ADNE的周长.