)阅读下面的材料,回答问题:爱动脑筋的小明在学过用配方法解一元二次方程后,他发现二次三项式也可以配方,从而解决一些问题。例如:-6x+10=(-6x+9-9)+10=-9+10=+1≥1;因此-6x+10有最小值是1;(1)尝试:-3-6x+5=-3(+2x+1-1)+5=-3+8,因此-3-6x+5有最大值是______(2)应用:有长为24米的篱笆,一面利用墙(墙的最大可用长度为a为15米),围成一个的长方形花圃。能围成面积最大的花圃吗?如果能,请求出最大面积.
晓东在解一元二次方程时,发现有这样一种解法: 如:解方程. 解:原方程可变形,得.,,. 直接开平方并整理,得. 我们称晓东这种解法为“平均数法”. (1)下面是晓东用“平均数法”解方程时写的解题过程. 解:原方程可变形,得.,. 直接开平方并整理,得¤. 上述过程中的“”,“” ,“☆”,“¤”表示的数分别为_____,_____,_____,_____. (2)请用“平均数法”解方程:.
已知二次函数. (1)若点与在此二次函数的图象上,则(填 “>”、“=”或“<”); (2)如图,此二次函数的图象经过点,正方形ABCD的顶点C、D在x轴上, A、B恰好在二次函数的图象上,求图中阴影部分的面积之和.
如图,AB为O的直径,射线AP交O于C点,∠PCO的平分线交O于D点,过点D作交AP于E点. (1)求证:DE为O的切线; (2)若,,求直径的长.
如图,用长为20米的篱笆恰好围成一个扇形花坛,且扇形花坛的圆心角小于180°,设扇形花坛的半径为米,面积为平方米.(注:的近似值取3) (1)求出与的函数关系式,并写出自变量的取值范围; (2)当半径为何值时,扇形花坛的面积最大,并求面积的最大值.
若关于的方程 有实数根. (1)求的取值范围; (2)当取得最大整数值时,求此时方程的根.