已知:如图,在▱ABCD中,E、F分别为边AB、CD的中点,BD是对角线,AG∥DB交CB的延长线于G.(1)求证:△ADE≌△CBF;(2)若四边形BEDF是菱形,则四边形AGBD是什么特殊四边形?并证明你的结论.
张大伯计划建一个面积为72平方米的矩形养鸡场,为了节约材料,鸡场一边靠着原有的一堵墙(墙长15米),另外的部分(包括中间的隔墙)用30米的竹篱笆围成,如图.(1)请你通过计算帮助张大伯设计出围养鸡场的方案.(2)在上述条件不变的情况下,能围出比72平方米更大的养鸡场吗?请说明理由.
先阅读,后解答:像上述解题过程中,与相乘,积不含有二次根式,我们可将这两个式子称为互为有理化因式,上述解题过程也称为分母有理化,(1)的有理化因式是 ; 的有理化因式是 .(2)将下列式子进行分母有理化: (1)= ;(2)= .(3)已知a=,b=,比较a与b的大小关系.
若x=0是关于x的一元二次方程(m﹣2)x2+3x+m2+2m﹣8=0的一个解,求实数m的值和另一个根.
一布袋中有红、黄、白三种颜色的球各一个,它们除颜色外,其它都一样,小亮从布袋摸出一个球后放回去摇匀,再摸出一个球,请你用列举法(列表法或树形图)分析并求出小亮两次都能摸到白球的概率.
解方程:(x+3)2=2(x+7)