如图,长方形纸片中,AB=10,将纸片折叠,使顶点落在边上的点处,折痕的一端点在边上.(1)如图(1),当折痕的另一端在边上且AE=5时,求AF的长(2)如图(2),当折痕的另一端在边上且BG=13时,求AF的长.
已知一元二次方程x2-4x+3=0的两根是m,n且m<n.如图12,若抛物线y=-x2+bx+c的图像经过点A(m,0)、B(0,n).求抛物线的解析式.若(1)中的抛物线与x轴的另一个交点为C.根据图像回答,当x取何值时,抛物线的图像在直线BC的上方?点P在线段OC上,作PE⊥x轴与抛物线交与点E,若直线BC将△CPE的面积分成相等的两部分,求点P的坐标.
认真阅读下面关于三角形内外角平分线所夹的探究片段,完成所提出的问题.探究如图11-1,在△ABC中,O是∠ABC与∠ACB的平分线BO和CO的交点,通过分析发现∠BOC=90°+,理由如下:∵BO和CO分别是∠ABC和∠ACB的角平分线如图11-2中,O是∠ABC与外角∠ACD的平分线BO和CO的交点,试分析∠BOC与∠A有怎样的关系?请说明理由.如图11-3中,O是外角∠DBC与外角∠ECB的平分线BO和CO的交点,则∠BOC与∠A有怎样的关系?(只写结论,不需证明)结论: .
已知:如图8,AB是⊙O的直径,AC是弦,直线EF是过点C的⊙O的切线,AD⊥EF于点D.求证:∠BAC=∠CAD若∠B=30°,AB=12,求的长.
某学校九年级的学生去旅游,在风景区看到一棵古松,不知这棵古松有多高,下面是他们的一段对话: 甲:我站在此处看树顶仰角为45°。 乙:我站在此处看树顶仰角为30°。 甲:我们的身高都是1.5m。 乙:我们相距20m。 请你根据两位同学的对话,参考图7计算这棵古松的高度。(参考数据≈1.414,≈1.732,结果保留两位小数)。
如图, 已知抛物线经过坐标原点O及,其顶点为B(m,3),C是AB中点,点E是直线OC上的一个动点 (点E与点O不重合),点D在y轴上, 且EO=ED .(1)求此抛物线及直线OC的解析式;(2)当点E运动到抛物线上时, 求BD的长;(3)连接AD, 当点E运动到何处时,△AED的面积为,请直接写出此时E点的坐标.