已知抛物线与椭圆在第一象限的交点为B,O为坐标原点,A是椭圆右顶点,的面积为.(1)求抛物线的方程;(2)过A点作直线交于C,D两点,射线OC,OD分别交于E,F两点,记和的面积分别为和,问是否存在直线,使得若存在,求出直线方程,若不存在,请说明理由.
如图,四棱锥的底面是直角梯形,,,和是两个边长为的正三角形,,为的中点,为的中点. (Ⅰ)求证:平面; (Ⅱ)求证:平面; (Ⅲ)求直线与平面所成角的正弦值.
为了解某市今年初二年级男生的身体素质状况,从该市初二年级男生中抽取了一部分学生进行“掷实心球”的项目测试.成绩低于6米为不合格,成绩在6至8米(含6米不含8米)的为及格,成绩在8米至12米(含8米和12米,假定该市初二学生掷实心球均不超过12米)为优秀.把获得的所有数据,分成五组,画出的频率分布直方图如图所示.已知有4名学生的成绩在10米到12米之间. (Ⅰ)求实数的值及参加“掷实心球”项目测试的人数; (Ⅱ)根据此次测试成绩的结果,试估计从该市初二年级男生中任意选取一人,“掷实心球”成绩为优秀的概率; (Ⅲ)若从此次测试成绩不合格的男生中随机抽取2名学生再进行其它项目的测试,求所抽取的2名学生来自不同组的概率.
设△的三边为满足. (Ⅰ)求的值; (Ⅱ)求的取值范围.
已知函数 (I)若不等式的解集为,求实数的值; (II)在(I)的条件下,若对一切实数恒成立,求实数的取值范围.
在直角坐标系中,圆的参数方程为参数).以为极点,轴的非负半轴为极轴建立极坐标系. (Ⅰ)求圆的极坐标方程; (Ⅱ)直线的极坐标方程是,射线与圆的交点为,与直线的交点为,求线段的长.