(本小题满分10分)选修4—4:坐标系与参数方程在直角坐标系xOy中,直线l的参数方程为(t为参数),以原点为极点,x轴正半轴为极轴建立极坐标系,⊙C的极坐标方程为ρ=2sinθ.(Ⅰ)写出⊙C的直角坐标方程;(Ⅱ)P为直线l上一动点,当P到圆心C的距离最小时,求P的直角坐标.
已知函数. (1)若在上的最大值为,求实数的值; (2)若对任意,都有恒成立,求实数的取值范围; (3)在(1)的条件下,设,对任意给定的正实数,曲线上是否存在两点、,使得是以(为坐标原点)为直角顶点的直角三角形,且此三角形斜边中点在轴上?请说明理由。
已知中心在坐标原点焦点在轴上的椭圆C,其长轴长等于4,离心率为. (Ⅰ)求椭圆C的标准方程; (Ⅱ)若点(0,1), 问是否存在直线与椭圆交于两点,且?若存在,求出的取值范围,若不存在,请说明理由.
已知函数. (1)证明函数的图像关于点对称; (2)若,求; (3)在(2)的条件下,若,为数列的前项和,若对一切都成立,试求实数的取值范围.
如图所示,在四面体中,,,两两互相垂直,且. (1)求证:平面平面; (2)求二面角的大小; (3)若直线与平面所成的角为,求线段的长度.
为丰富高三学生的课余生活,提升班级的凝聚力,某校高三年级6个班(含甲、乙)举行唱歌比赛.比赛通过随机抽签方式决定出场顺序. 求:(1)甲、乙两班恰好在前两位出场的概率; (2)比赛中甲、乙两班之间的班级数记为,求的分布列和数学期望.