(本小题满分12分)定义在R上的函数满足:对任意实数,总有,且当时,.(Ⅰ)试求的值;(Ⅱ)判断的单调性并证明你的结论.
(本小题满分14分)已知10件产品中有3件是次品. (I)任意取出3件产品作检验,求其中至少有1件是次品的概率; (II)为了保证使3件次品全部检验出的概率超过0.6,最少应抽取几件产品作检验?
已知向量, , . (Ⅰ)求的值; (Ⅱ)若, , 且, 求.
(本小题满分12分)已知实数,函数. (Ⅰ)若函数有极大值32,求实数的值;(Ⅱ)若对,不等式恒成立,求实数的取值范围.
(本小题满分14分) 如图(1),是等腰直角三角形,,、分别为、的中点,将沿折起,使在平面上的射影恰为的中点,得到图(2). (Ⅰ)求证:; (Ⅱ)求三棱锥的体积.
(本小题满分14分)已知二次函数,不等式的解集为.(Ⅰ)若方程有两个相等的实根,求的解析式;(Ⅱ)若的最大值为正数,求实数的取值范围.