(本小题满分10分)在平面直角坐标系中,抛物线与坐标轴的交点都在圆上.(1)求圆的方程;(2)若线段为圆的直径,点为直线上的动点,求的最小值.
已知函数(Ⅰ)若曲线在和处的切线互相平行,求的值及函数的单调区间;(Ⅱ)设,若对任意,均存在,使得,求实数的取值范围.
如图,已知圆C与y轴相切于点T(0,2),与x轴正半轴相交于两点M,N (点M在点N的右侧),且。椭圆D:的焦距等于,且过点( I ) 求圆C和椭圆D的方程;(Ⅱ) 若过点M的动直线与椭圆D交于A、B两点,若点N在以弦AB为直径的圆的外部,求直线斜率的范围。
高三年级有3名男生和1名女生为了报某所大学,事先进行了多方详细咨询,并根据自己的高考成绩情况,最终估计这3名男生报此所大学的概率都是,这1名女生报此所大学的概率是.且这4人报此所大学互不影响。(Ⅰ)求上述4名学生中报这所大学的人数中男生和女生人数相等的概率;(Ⅱ)在报考某所大学的上述4名学生中,记为报这所大学的男生和女生人数的和,试求的分布列和数学期望.
在三棱柱ABC-A1B1C1中,AB=BC=CA=AA1=2,侧棱AA1⊥面ABC,D、E分别是棱A1B1、AA1的中点,点F在棱AB上,且.(Ⅰ)求证:EF∥平面BDC1;(Ⅱ)求二面角E-BC1-D的余弦值.
各项均为正数的等比数列{an}中,已知a2="8," a4="128," bn=log2an .(1)求数列{an}的通项公式;(2)求数列{bn}的前n项和Sn(3)求满足不等式的正整数n的最大值