(本小题满分12分)某校从参加高二年级期中考试的学生中随机抽取名学生,将其数学成绩(均为整数)分成六段,…后得到如下部分频率分布直方图,观察图形的信息,回答下列问题:(1)求分数在内的频率,并补全这个频率分布直方图;(2)根据频率分布直方图,估计本次数学成绩的平均数;(3)用分层抽样的方法在分数段为的学生中抽取一个容量为的样本,将该样本看成一个总体,从中任取人,求至多有人分数在的概率.
(本小题满分14分)已知直线l:与双曲线C:()相交于B、D两点,且BD的中点为M(1,3). (1)求双曲线C的离心率; (2)设双曲线C的右顶点为A,右焦点为F,,试判断△ABD是否为直角三角形,并说明理由.
(本小题满分14分)已知数列{}满足:,();数列{}满足:(). (1)求数列{}的通项公式及其前n项和; (2)证明:数列{}中的任意三项不可能成等差数列.
(本小题满分14分)如图,四棱锥P—ABCD的底面是边长为1的正方形,PD^底面ABCD,PD=AD,E为PC的中点,F为PB上一点,且EF^PB. (1)证明:PA//平面EDB; (2)证明:AC^DF; (3)求三棱锥B—ADF的体积.
(本小题满分12分)某校高一年级有四个班,其中一、二班为数学课改班,三、四班为数学非课改班.在期末考试中,课改班与非课改班的数学成绩优秀与非优秀人数统计如下表.
(1)请完成上面的2´2列联表,并判断若按99%的可靠性要求,能否认为“成绩与课改 有关”; (2)若采用分层抽样的方法从课改班的学生中随机抽取4人,则数学成绩优秀和数学成绩非优秀抽取的人数分别是多少? (3)在(2)的条件下,从中随机抽取2人,求两人数学成绩都优秀的概率.
(本小题满分12分)已知函数. (1)求函数的最小正周期; (2)若,,求的值.