如图,在Rt△ABC中,内切圆⊙O分别与AB、AC、BC相切,且AB=5,AC=13,求内切圆的半径。
设△ABC的内角A,B,C所对的边分别为a,b,c,且a+c=6,b=2,cosB=.(1)求a,c的值;(2)求sin(A-B)的值.
在△ABC中,角A,B,C所对的边分别为a,b,c,且(2a+c)··+c·=0.(1)求角B的大小;(2)若b=2,试求·的最小值.
已知|a|=4,|b|=3,(2a-3b)·(2a+b)=61.(1)求a与b的夹角θ;(2)求|a+b|;(3)若=a,=b,求△ABC的面积.
已知向量a=(1,2),b=(-2,m),x=a+(t2+1)b,y=-ka+b,m∈R,k、t为正实数.(1)若a∥b,求m的值;(2)若a⊥b,求m的值;(3)当m=1时,若x⊥y,求k的最小值.
已知平面向量a=(1,x),b=(2x+3,-x),x∈R.(1)若a⊥b,求x的值;(2)若a∥b,求|a-b|的值.