有形状、大小和质地都相同的四张卡片,正面分别写有和一个等式,将这四张卡片背面向上洗匀,从中随机抽取一张(不放回),接着再随机抽取一张.(1)用画树状图或列表的方法表示抽取两张卡片可能出现的所有情况(结果用A、B、C、D表示);(2)小明和小强按下面规则做游戏:抽取的两张卡片上若等式都不成立,则小明胜,若至少有一个等式成立,则小强胜.你认为这个游戏公平吗?若公平,请说明理由;若不公平,则这个规则对谁有利,为什么?
将一次函数y=2x+3的图象平移后过点(1,4),则平移后得到的图象函数关系式为 .
已知抛物线的图像经过点O(0,0)A(6,0)。 (1)b = ,c = ; (2)点B是x正半轴上的一动点,以OB为边在第一象限作一个正方形OBCD,使其一个顶点在抛物线上(不包括B点 ),画出示意图,求点B的坐标; (3)在(2)的条件下,点E是线段BC上的一个动点,连结DE交线段AC与点F,则线段DF是否存在最小值,如果存在,请求出结果,如果不存在,请说明理由;
如图,⊙O为△ABC的外接圆,直线l与⊙O相切于点P,且l∥BC.要求:仅用无刻度的直尺,在图中画出∠BAC的平分线,并说明理由.
某玩具厂计划生产一种玩具熊猫,每日最高产量为40只,且每日产出的产品全部售出.已知生产x只玩具熊猫的成本为R(元),售价每只为P(元),且R、P与x的关系式分别为R=500+30x,P=170-2x.(1)当日产量为多少时,每日获得的利润为1750元?(2)当日产量为多少时,可获得最大利润?最大利润是多少?
已知:抛物线经过点P(﹣1,﹣2b)(b、c为常量).(1)求b+c的值;(2)证明:无论b、c取何值,抛物线与x轴都有两个交点.