(本题12分)已知数轴上有A、B、C三个点,它们表示的数是﹣24,﹣10,10. (1)填空:AB=_________,BC= ; (2)若点A以每秒1个单位长度的速度向左运动,同时,点B和点C分别以每秒3个单位长度和7个单位长度的速度向右运动.设运动时间为t秒,若点B与点C之间的距离表示为BC,点A与点B之间的距离表示为AB,用含t的代数式表示BC和AB的长,并探索:BC-AB的值是否随着时间t的变化而改变?请说明理由
如图,已知抛物线与轴的两个交点为A、B,与轴交于点C (1)求A、B、C三点的坐标? (2)用配方法求该二次函数的对称轴和顶点坐标? (3)若坐标平面内的点M,使得以点M和三点A、B、C为顶点的四边形是平行四边形,求点M的坐标?(直接写出M的坐标,不用说明)
在一张桌子的桌面长为6m,宽为4m,台布面积是桌面面积的2倍,如果将台布铺在桌子上,各边垂下的长度相同,求这块台布的长和宽?
(1)探究下表中的奥秘,并完成填空:
(2)仿照上表把二次三项式(其中)进行分解?
如图,AB是⊙O的直径,C为⊙O上一点,AB和过C点的切线互相垂直,垂足为D,求证:AC平分∠DAB.
一个二次函数的图象经过点(0,0),(-1,-1),(1,9)三点,求这个函数的关系式