(本题10分)求下列各式中的x(1)9x2-64=0(2)125x3+27=0
计算:(每小题4分,共12分)(1) (2)(3) ,其中
平面直角坐标系xOy中,抛物线与x轴交于点A、点B,与y轴的正半轴交于点C,点 A的坐标为 (1, 0),OB=OC,抛物线的顶点为D.(1) 求此抛物线的解析式;(2) 若此抛物线的对称轴上的点P满足∠APB=∠ACB,求点P的坐标;(3) Q为线段BD上一点,点A关于∠AQB的平分线的对称点为,若,求点Q的坐标和此时△的面积.
已知:在如图1所示的锐角三角形ABC中,CH⊥AB于点H,点B关于直线CH的对称点为D,AC边上一点E满足∠EDA=∠A,直线DE交直线CH于点F.(1) 求证:BF∥AC;(2) 若AC边的中点为M,求证:;(3) 当AB=BC时(如图2),在未添加辅助线和其它字母的条件下,找出图2中所有与BE相等的线段,并证明你的结论.图1 图2
已知关于x的一元二次方程的一个实数根为 2. (1) 用含p的代数式表示q; (2) 求证:抛物线与x轴有两个交点; (3) 设抛物线的顶点为M,与 y轴的交点为E,抛物线顶点为N,与y轴的交点为F,若四边形FEMN的面积等于2,求p的值.
阅读下列材料:问题:如图1,在正方形ABCD内有一点P,PA=,PB=,PC=1,求∠BPC的度数.小明同学的想法是:已知条件比较分散,可以通过旋转变换将分散的已知条件集中在一起,于是他将△BPC绕点B逆时针旋转90°,得到了△BP′A(如图2),然后连结PP′.请你参考小明同学的思路,解决下列问题:(1) 图2中∠BPC的度数为 ;(2) 如图3,若在正六边形ABCDEF内有一点P,且PA=,PB=4,PC=2,则∠BPC的度数为 ,正六边形ABCDEF的边长为 .图1 图2 图3