(本小题满分15分)已知椭圆:()的一个焦点为,且上一点到其两焦点的距离之和为.(Ⅰ)求椭圆的标准方程;(Ⅱ)设直线与椭圆交于不同两点,若点满足,求实数的值.
给定椭圆C: (a>b>0),称圆C1:x2+y2=a2+b2为椭圆C的“伴随圆”.已知椭圆C的离心率为,且经过点(0,1).(1)求实数a,b的值;(2)若过点P(0,m)(m>0)的直线l与椭圆C有且只有一个公共点,且l被椭圆C的伴随圆C1所截得的弦长为2,求实数m的值.
已知{an}是等差数列,其前n项的和为Sn, {bn}是等比数列,且a1=b1=2,a4+b4=21,S4+b4=30.(1)求数列{an}和{bn}的通项公式;(2)记cn=anbn,n∈N*,求数列{cn}的前n项和.
如图,三棱柱ABC-A1B1C1中,M,N分别为AB,B1C1的中点. (1)求证:MN∥平面AA1C1C; (2)若CC1=CB1,CA=CB,平面CC1B1B⊥平面ABC,求证:AB^平面CMN.
已知函数f(x)=2sin(2x+φ)(0<φ<2π)的图象过点(,-2).(1)求φ的值;(2)若f()=,-<α<0,求sin(2α-)的值.
已知函数.(1)当时,求函数的单调区间;(2)当时,函数图象上的点都在,所表示的平面区域内,不等式恒成立,求实数的取值范围.